

Inverting the Interaction Cycle
to Model Embodied Agents

Olivier L. Georgeon1 and Amélie Cordier1
1Université de Lyon, CNRS.

Université Lyon 1, LIRIS, UMR5205, F-69622, France.
olivier.georgeon@liris.cnrs.fr, amelie.cordier@liris.cnrs.fr

Abstract
Cognitive architectures should make explicit the conceptual begin and end points of the
agent/environment interaction cycle. Most architectures begin with the agent receiving input data
representing the environment, and end with the agent sending output data. This paper suggests
inverting this cycle: the agent sends output data that specifies an experiment, and receives input data
that represents the result of this experiment. This complies with the embodiment paradigm because the
input data does not directly represent the environment and does not amount to the agent’s perception.
We illustrate this in an example and propose an assessment method based upon activity-trace analysis.

Keywords: Embodiment, perception-action, cognitive modeling, intrinsic motivation, activity trace.

1 Introduction
Cognitive architectures and machine-learning models generally represent the interaction between

the agent and the environment as a cycle in which the agent alternatively receives input data from the
environment and sends output data to the environment. Figure 1 depicts this cycle.

The agent receives input data (left arrow) from the
environment and sends output data (right arrow) to the
environment. The cycle rotates indefinitely; the figure
does not show when the cycle begins and when it ends.

Figure 1: interaction cycle between an agent (top) and an environment (bottom).

!"#$%&

'$()*+$,#$%&

Input
data

Output
data

The model in Figure 1 implies no particular commitment about the nature of the input and output
data. Most models, however, make an additional commitment: they arrange the input data so that it
represents the environment, and they implement the agent’s algorithm so that it exploits this
assumption. The term represent is used here in its etymological sense of “making present again”. That
is, traditional models use the input data as a representative sent to the agent by the environment, as if
the input data made the environment’s state accessible to the agent, at least partially and possibly
blend with noise. Section 2 develops this argument by analyzing symbolic cognitive models (e.g., [1])
and reinforcement learning models as they are typically implemented in Partially Observable Markov
Decision Processes (POMDPs, e.g., [2]).

There exist other possibilities than designing input data to represent the environment. A typical
alternative has been offered by cybernetic control theory (e.g., [3]) in which the input data was a
perturbation of a control loop. More recently, some authors have advocated an inversion of the
perception-action cycle (e.g., [4]). Inverting the interaction cycle allows modeling the input data so
that it does not directly represent the state of the environment. Instead, the input data can represent the
result of an experiment initiated by the agent. In the same environment’s state, different experiments
may produce different results; the result itself thus does not represent the environment’s state, not even
partially or with noise. This paper follows this idea to propose the Experiment-Result Cycle (ERC).
Section 3 examines it further.

A key concept of the embodiment paradigm (e.g., [5]) is that the agent is not a passive observer of
reality but rather constructs a perception of reality through active interaction (“perception and action
arise together, dialectically forming each other”, [6] p5). This implies that the model should derive
perception as a secondary construct resulting from experience of interaction, rather than considering
the input data as the agent’s perception. The term embodiment means that the agent must be a part of
reality for this active interaction to happen.

The ERC ensures that the input data is not considered as the agent’s perception precisely because
the input data does not represent the state of the environment. For this reason, we propose the ERC as
a possible starting point to model agents according to the embodiment paradigm.

Since ERC agents do not access the environment’s state, the designer cannot program them to seek
a particular environment’s state as a goal. Therefore, we cannot assess ERC models by measuring their
performance in reaching goal states. ERC models thus require another validation paradigm. This
requirement has been frequently raised in the literature of embodied robotics (e.g., [7]), intrinsic
motivation (e.g., [8]), and developmental learning (e.g., [9]).

We suggest using a validation paradigm similar to that used to assess natural cognitive systems
(animals): behavioral analysis (e.g., [10]). This paradigm requires the embodied-artificial-intelligence
scientific community to find a consensus on how to qualify cognitive behaviors. To contribute to this
endeavor, Section 3 gives an initial example of behavioral analysis of a simple ERC algorithm.

2 When does the cycle begin?
Figure 2 illustrates symbolic cognitive models (e.g., [1]) by making explicit the conceptual begin

and end points of the interaction cycle.

The black circle represents the begin point: a symbol is
passed from the environment to the agent. The agent
interprets this symbol according to semantic rules, and
decides on an action to carry out in the environment.
The black triangle represents the end of the cycle when
the environment receives the action chosen by the
agent.

Figure 2: the symbolic cognitive cycle.

!"#$%&
!"#$%&'()*+",(

'$()*+$,#$%&

Symbol Action

In symbolic cognitive models, the agent’s input data is symbolic in the sense that it symbolizes
elements of the environment and it is interpreted according to semantic rules implemented in the
agent. For example, we can model an animal eating apples using the rules 〈if input = “apple” then
input is edible〉 and 〈if input is edible then action = “eat” 〉. Since the input symbol represents the
environment’s state, we can consider that the cycle begins with reading the input symbol, and ends
with sending the action. Thus, Figure 2 represents symbolic models more precisely than Figure 1
because it makes explicit the begin point (black circle) and end point (black triangle) of the interaction
cycle.

Symbolic models are typically used for problem solving. In this case, the designer specifies the
goal state through rules that check for goal completion, and specifies heuristics to reach the goal
through a set of rules. If the input symbol did not represent elements of the environment’s state, it
would be impossible to specify the goal completion rules and the heuristic rules. This validation
paradigm could not apply.

Figure 3 illustrates a Partially Observable Markov Decision Processes (POMDPs, e.g., [2]) by
making explicit the conceptual begin and end points of the interaction cycle.

The environment is modeled as a set of states S. At the
beginning of cycle t (black circle), the agent receives
an observation ot computed as a function of the state
f(st), and a reward r(st) associated with the state st
resulting from the previous action at-1. At the end of
cycle t (black triangle), the agent sends the action at to
the environment. This action swaps the environment
from st to st+1.

Figure 3: the POMDP cycle.

The agent’s input data is called observation and is typically computed as a function of the state: ot
= f(st). In contrast with symbolic models, the observation is not symbolic in the sense that it does not
match semantic rules in the agent. Yet, it still constitutes a representation of the environment since it
is a function of the environment’s state. The function f(s) may incorporate stochastic noise but the
observation still represents the environment statistically, as if it was blended with noise. Since the
observation is a function of the environment’s state only, we can consider that the cycle begins with
the observation and ends with the action. Figure 3 makes this explicit with the black circle and
triangle.

The agent additionally receives a scalar reward r(st) computed as a function of the environment’s
state, which defines the agent’s goal. If the reward was not associated with the environment’s state, the
agent’s goal could not be specified as a state to reach.

Note that some variations of POMDPs have been proposed in which the scope of the observation
depended on the previous action, thus involving a form of active perception (e.g., [11]). However, the
algorithms still assumed that the observation reflected the state of the environment (as if the
environment was observed through a filter that varied with the action), and still sought reward states
on the basis of the reward associated with states.

3 The Experiment-Result Cycle
In contrast with both symbolic models and reinforcement-learning models, the Experiment-Result

Cycle conceptually begins with the agent sending output data, and ends with the agent receiving input
data. This is illustrated in Figure 4.

!"#$%&

'$()*+$,#$%&
!%&! S&

Action

at ! A

Observation
ot = f (st) ! O
Reward&&
rt = r (st) !

At the beginning of interaction cycle t (black circle)
the agent chooses an experiment et from amongst the
set E of experiments at its disposal. At the end of
interaction cycle t (black triangle), the agent receives
the result rt of the experiment. The same state of the
environment may generate different results depending
on the experiment.

Figure 4: the Experiment-Result Cycle.

In the ERC, the agent's input (called result rt in Figure 4) is designed as a result of an experiment
initiated by the agent. The agent does not have access to the environment’s state, neither through an
input symbol, an observation, or a reward value. There is no data in the agent connected with the
environment’s state that would offer a grip for designing an algorithm that would seek goal states.
This is acceptable within the embodiment paradigm because we expect embodied agents to engage in
incremental and open-ended learning rather than learning to reach predefined goal states. The
environment may even not be modeled as a set of states, as in the example below, and as the real
world.

Some authors in the domain of intrinsic motivation have already addressed the problem of
implementing motivational principles without a reference to external criteria (e.g., [12, 8, 13]). Here,
we report a simple algorithm in which the agent is considered pleased when it correctly anticipated the
result of an experiment, and pained otherwise. This is a minimalist version of the motivational
principle of becoming in control of one’s activity, which Steels [14] called the autotelic principle.
Additionally, our agent is bored when it has been pleased for too long, which causes it to change
experiment, even though it may not be able to correctly anticipate the result. Table 1 (left) presents
this algorithm.

01 experiment = e1
02 Loop(cycle++)
03 if (mood = BORED)
04 pleasedDuration = 0
05 experiment = pickOtherExperiment(experiment)
06 anticipatedResult = anticipate(experiment)
07 if (experiment = e1)
08 result = r1
09 else
10 result = r2
11 recordTuple(experiment, result)
12 if (result = anticipatedResult)
13 mood = PLEASED
14 pleasedDuration++
15 else
16 mood = PAINED
17 pleasedDuration = 0
18 if (pleasedDuration > 3)
19 mood = BORED
20 print cycle, experiment, result, mood

00: e1r1 PAINED
01: e1r1 PLEASED
02: e1r1 PLEASED
03: e1r1 PLEASED
04: e1r1 BORED
05: e2r2 PAINED
06: e2r2 PLEASED
07: e2r2 PLEASED
08: e2r2 PLEASED
09: e2r2 BORED
10: e1r1 PLEASED
11: e1r1 PLEASED
12: e1r1 PLEASED
13: e1r1 BORED
14: e2r2 PLEASED
15: e2r2 PLEASED
16: e2r2 PLEASED
17: e2r2 BORED
18: e1r1 PLEASED
19: e1r1 PLEASED

Table 1: Left: algorithm of a minimalist ERC system. Right: trace of the first twenty interaction cycles.

Table 1 (left), Lines 03 to 05: if the agent is bored then it picks another experiment arbitrarily from
amongst the predefined list of experiments at its disposal. Line 06: the anticipate(experiment) function
searches memory for a previously learned tuple that matches the chosen experiment, and returns its
result as the next anticipated result. Lines 07 to 10 implement the environment: e1 always yields r1,
and other experiments always yield r2. Line 11: the agent records the tuple 〈experiment, result〉 in
memory. Lines 12 to 17: if the result was anticipated correctly then the agent is pleased, otherwise it is

!"#$%&
Experiment Result

rt ! R et ! E

'$()*+$,#$%&

pained. Lines 18 and 19: if the agent has been pleased for too long (arbitrarily 3 cycles) then it
becomes bored. Table 1 (right) shows the activity trace generated by this algorithm.

On Cycle 00, the agent chose experiment e1 and received result r1. It was pained because it could
not anticipate this result. It recorded the tuple 〈e1, r1〉. On Cycle 01, it chose e1 again, anticipated r1 on
the basis of the previous experience, got r1, and was pleased because the anticipation was correct. It
kept e1 during the next two cycles. On Cycle 04, it got bored because it had been pleased for too long.
On cycle 05, it changed experiment to e2 because it was bored. It was, however, unable to anticipate
the result because it never tried e2 before. It received r2, was pained because it could not anticipate it,
and learned the tuple 〈e2, r2〉. On Cycle 09, it got bored again. On Cycle 10, it changed back to e1, and
anticipated result r1 based on the experience gained on Cycle 00; it indeed received r1, and was
pleased because its anticipation was correct.

We reported this analysis to exemplify the validation paradigm that we propose: demonstrating
cognitive behaviors using activity traces. This behavior is very rudimentary; this agent would be
unlikely to remain pleased if confronted with a more complex environment. In other studies [15], we
implemented another kind of self-motivation called interactional motivation. We called the tuple
〈experience, result〉 an interaction. Interactional motivation associates a predefined scalar valence with
interactions, and implements an agent that tries to enact interactions that have a positive valence, and
to avoid interactions that have a negative valence. By predefining interactions that maintain
homeostasis (e.g. eating) and giving them a positive valence, this method allows implementing the
motivation to regulate homeostasis without a reference to the environment’s state. We also highlighted
the emergence of sense-making with a more complex learning algorithm for ERC agents [16].

Another example that follows an approach similar to the ERC is the Horde architecture [17]. Horde
relies on a swarm of reinforcement-learning agents to control a robot that learns hierarchical temporal
regularities of interaction through experience.

4 Conclusion
Inverting the interaction cycle does not merely lead to an action-perception cycle. Indeed, the

expression action-perception cycle suggests that the agent’s input data would still represent the
environment’s state. Instead, inverting the interaction cycle allows designing the agent’s input data so
that it does not represent the environment’s state and does not constitute the agent’s perception. For
this reason, we propose the new expression Experiment-Result Cycle (ERC).

When applied to a robot, the ERC involves implementing algorithms that exploit sensor data as a
result of an experiment performed by the robot in the real world. We argue that this approach complies
with the embodiment paradigm because it does not require modeling the real world a priori in order to
design input data as a representation of the world.

We wish cognitive architectures made explicit whether they receive their input data at the
beginning or at the end of the interaction cycle: at the beginning when it represents the environment,
or at the end when it does not. While there may be more to embodiment than that, we believe that this
could at least help clarify some of the differences between non-embodied and embodied cognitive
architectures.

Since ERC agents do not incorporate data that directly represent the environment’s state, we
cannot program them to reach goal states, and we cannot assess them by measuring their performance
in reaching goal states. We suggest other research objectives, namely designing ERC agents that
exhibit smarter cognitive behaviors. This requires the scientific community to define cognitive
behaviors more precisely and to specify criteria to assess their level of smartness.

Drawing inspiration from methods used in ethology to assess animals’ intelligence, we suggest
producing evidences of cognitive behaviors using activity traces. An activity trace is a stream of data
that represents the agent’s activity. It includes pieces of the agent’s output data, input data, and

internal data. It allows reporting representative strips of activity for the community to judge the
agent’s level of intelligence.

Acknowledgement
Support	 for	 this	 work	 was	 provided	 by	 the	 Agence	 Nationale	 de	 la	 Recherche	 contract	 ANR-‐

10-‐PDOC-‐007-‐01.	

References
[1] Newell, A. & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search.
Communications of the ACM, 19(3), 113–126.
[2] Kaelbling L., Littman M., & Cassandra A. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101, 99-134.
[3] Foerster, H. (1960). On self-organizing systems and their environments. In Yovits, M. and
Cameron, S. (Eds), Self-Organizing Systems (pp. 31–50). Pergamon Press, London.
[4] Pfeifer, R. & Scheier, C. (1994). From perception to action: The right direction? In P. Gaussier and
J.-D. Nicoud (Eds.), From Perception to Action (pp. 1-11). IEEE Computer Society Press.
[5] Varela, Thompson, & Rosch (1991). The Embodied Mind: Cognitive Science and Human
Experience. Cambridge, MA: The MIT Press.
[6] Clancey, W. J. (1992). “Situated” means coordinating without deliberation. McDonnel Foundation
Conference. Santa Fe, NM.
[7] Pfeifer, R. & Bongard, S. (2006). How the body shapes the way we think: A new view of
intelligence. Cambridge, MA: MIT Press.
[8] Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265-286.
[9] Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey.
Connection Science, 15(4), 151–190.
[10] Martin P. & Bateson P. (1993). Measuring behavior, An introductory guide. Cambridge
University Press.
[11] McCallum A. (1996). Learning to use selective attention and short-term memory in sequential
tasks. The Fourth International Conference on Simulating Adaptive Behavior.
[12] Blank, D. S., Kumar, D., Meeden, L., & Marshall, J. (2005). Bringing up robot: Fundamental
mechanisms for creating a self-motivated, self-organizing architecture. Cybernetics and Systems,
32(2), 125–150.
[13] Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation. IEEE
Transactions on Autonomous Mental Development, 2(3), 230–247.
[14] Steels, L. (2004). The Autotelic Principle. In I. Fumiya, R. Pfeifer, L. Steels, & K. Kunyoshi
(Eds), Embodied Artificial Intelligence (pp. 231- 242), Springer Verlag.
[15] Georgeon, O., Marshall, J., & Gay, S. (2012). Interactional motivation in artificial systems:
between extrinsic and intrinsic motivation. Second International Conference on Development and
Learning and on Epigenetic Robotics (EPIROB2012), San Diego, pp. 1-2, 2012.
[16] Georgeon, O. & Marshall, J. (2013). Demonstrating sensemaking emergence in artificial agents:
A method and an example. International Journal of Machine Consciousness, 5(2): 131-144.
[17] Sutton R., Modayil J., Delp M., Degris T., Pilarski P. M., White A., & Precup D. (2011). Horde:
A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction.
In: Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), Volume 2: 761–776. IFAAMAS, Taipei.

