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Abstract 
Cognitive architectures should make explicit the conceptual begin and end points of the 
agent/environment interaction cycle. Most architectures begin with the agent receiving input data 
representing the environment, and end with the agent sending output data. This paper suggests 
inverting this cycle: the agent sends output data that specifies an experiment, and receives input data 
that represents the result of this experiment. This complies with the embodiment paradigm because the 
input data does not directly represent the environment and does not amount to the agent’s perception. 
We illustrate this in an example and propose an assessment method based upon activity-trace analysis.  
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1 Introduction 
Cognitive architectures and machine-learning models generally represent the interaction between 

the agent and the environment as a cycle in which the agent alternatively receives input data from the 
environment and sends output data to the environment. Figure 1 depicts this cycle. 

 

 

 
 
The agent receives input data (left arrow) from the 
environment and sends output data (right arrow) to the 
environment. The cycle rotates indefinitely; the figure 
does not show when the cycle begins and when it ends. 

Figure 1: interaction cycle between an agent (top) and an environment (bottom). 

!"#$%&

'$()*+$,#$%&

Input  
data 

Output 
data 



 

 

The model in Figure 1 implies no particular commitment about the nature of the input and output 
data. Most models, however, make an additional commitment: they arrange the input data so that it 
represents the environment, and they implement the agent’s algorithm so that it exploits this 
assumption. The term represent is used here in its etymological sense of “making present again”. That 
is, traditional models use the input data as a representative sent to the agent by the environment, as if 
the input data made the environment’s state accessible to the agent, at least partially and possibly 
blend with noise. Section 2 develops this argument by analyzing symbolic cognitive models (e.g., [1]) 
and reinforcement learning models as they are typically implemented in Partially Observable Markov 
Decision Processes (POMDPs, e.g., [2]). 

There exist other possibilities than designing input data to represent the environment. A typical 
alternative has been offered by cybernetic control theory (e.g., [3]) in which the input data was a 
perturbation of a control loop. More recently, some authors have advocated an inversion of the 
perception-action cycle (e.g., [4]). Inverting the interaction cycle allows modeling the input data so 
that it does not directly represent the state of the environment. Instead, the input data can represent the 
result of an experiment initiated by the agent. In the same environment’s state, different experiments 
may produce different results; the result itself thus does not represent the environment’s state, not even 
partially or with noise. This paper follows this idea to propose the Experiment-Result Cycle (ERC). 
Section 3 examines it further. 

A key concept of the embodiment paradigm (e.g., [5]) is that the agent is not a passive observer of 
reality but rather constructs a perception of reality through active interaction (“perception and action 
arise together, dialectically forming each other”, [6] p5). This implies that the model should derive 
perception as a secondary construct resulting from experience of interaction, rather than considering 
the input data as the agent’s perception. The term embodiment means that the agent must be a part of 
reality for this active interaction to happen.  

The ERC ensures that the input data is not considered as the agent’s perception precisely because 
the input data does not represent the state of the environment. For this reason, we propose the ERC as 
a possible starting point to model agents according to the embodiment paradigm. 

Since ERC agents do not access the environment’s state, the designer cannot program them to seek 
a particular environment’s state as a goal. Therefore, we cannot assess ERC models by measuring their 
performance in reaching goal states. ERC models thus require another validation paradigm. This 
requirement has been frequently raised in the literature of embodied robotics (e.g., [7]), intrinsic 
motivation (e.g., [8]), and developmental learning (e.g., [9]).  

We suggest using a validation paradigm similar to that used to assess natural cognitive systems 
(animals): behavioral analysis (e.g., [10]). This paradigm requires the embodied-artificial-intelligence 
scientific community to find a consensus on how to qualify cognitive behaviors. To contribute to this 
endeavor, Section 3 gives an initial example of behavioral analysis of a simple ERC algorithm.  

2 When does the cycle begin? 
Figure 2 illustrates symbolic cognitive models (e.g., [1]) by making explicit the conceptual begin 

and end points of the interaction cycle.  
 

 

 

The black circle represents the begin point: a symbol is 
passed from the environment to the agent. The agent 
interprets this symbol according to semantic rules, and 
decides on an action to carry out in the environment. 
The black triangle represents the end of the cycle when 
the environment receives the action chosen by the 
agent. 

Figure 2: the symbolic cognitive cycle. 
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In symbolic cognitive models, the agent’s input data is symbolic in the sense that it symbolizes 
elements of the environment and it is interpreted according to semantic rules implemented in the 
agent. For example, we can model an animal eating apples using the rules 〈if input = “apple” then 
input is edible〉 and 〈if input is edible then action = “eat” 〉. Since the input symbol represents the 
environment’s state, we can consider that the cycle begins with reading the input symbol, and ends 
with sending the action. Thus, Figure 2 represents symbolic models more precisely than Figure 1 
because it makes explicit the begin point (black circle) and end point (black triangle) of the interaction 
cycle. 

Symbolic models are typically used for problem solving. In this case, the designer specifies the 
goal state through rules that check for goal completion, and specifies heuristics to reach the goal 
through a set of rules. If the input symbol did not represent elements of the environment’s state, it 
would be impossible to specify the goal completion rules and the heuristic rules. This validation 
paradigm could not apply.   

Figure 3 illustrates a Partially Observable Markov Decision Processes (POMDPs, e.g., [2]) by 
making explicit the conceptual begin and end points of the interaction cycle. 

 

 

The environment is modeled as a set of states S. At the 
beginning of cycle t (black circle), the agent receives 
an observation ot computed as a function of the state 
f(st), and a reward r(st) associated with the state st 
resulting from the previous action at-1. At the end of 
cycle t (black triangle), the agent sends the action at to 
the environment. This action swaps the environment 
from st to st+1. 

Figure 3: the POMDP cycle. 

The agent’s input data is called observation and is typically computed as a function of the state: ot 
= f(st). In contrast with symbolic models, the observation is not symbolic in the sense that it does not 
match semantic rules in the agent. Yet, it still constitutes a representation of the environment since it 
is a function of the environment’s state. The function f(s) may incorporate stochastic noise but the 
observation still represents the environment statistically, as if it was blended with noise. Since the 
observation is a function of the environment’s state only, we can consider that the cycle begins with 
the observation and ends with the action. Figure 3 makes this explicit with the black circle and 
triangle. 

The agent additionally receives a scalar reward r(st) computed as a function of the environment’s 
state, which defines the agent’s goal. If the reward was not associated with the environment’s state, the 
agent’s goal could not be specified as a state to reach.   

Note that some variations of POMDPs have been proposed in which the scope of the observation 
depended on the previous action, thus involving a form of active perception (e.g., [11]). However, the 
algorithms still assumed that the observation reflected the state of the environment (as if the 
environment was observed through a filter that varied with the action), and still sought reward states 
on the basis of the reward associated with states. 

3 The Experiment-Result Cycle 
In contrast with both symbolic models and reinforcement-learning models, the Experiment-Result 

Cycle conceptually begins with the agent sending output data, and ends with the agent receiving input 
data. This is illustrated in Figure 4. 
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At the beginning of interaction cycle t (black circle) 
the agent chooses an experiment et from amongst the 
set E of experiments at its disposal. At the end of 
interaction cycle t (black triangle), the agent receives 
the result rt of the experiment. The same state of the 
environment may generate different results depending 
on the experiment. 

Figure 4: the Experiment-Result Cycle. 

In the ERC, the agent's input (called result rt in Figure 4) is designed as a result of an experiment 
initiated by the agent. The agent does not have access to the environment’s state, neither through an 
input symbol, an observation, or a reward value. There is no data in the agent connected with the 
environment’s state that would offer a grip for designing an algorithm that would seek goal states. 
This is acceptable within the embodiment paradigm because we expect embodied agents to engage in 
incremental and open-ended learning rather than learning to reach predefined goal states. The 
environment may even not be modeled as a set of states, as in the example below, and as the real 
world. 

Some authors in the domain of intrinsic motivation have already addressed the problem of 
implementing motivational principles without a reference to external criteria (e.g., [12, 8, 13]). Here, 
we report a simple algorithm in which the agent is considered pleased when it correctly anticipated the 
result of an experiment, and pained otherwise. This is a minimalist version of the motivational 
principle of becoming in control of one’s activity, which Steels [14] called the autotelic principle. 
Additionally, our agent is bored when it has been pleased for too long, which causes it to change 
experiment, even though it may not be able to correctly anticipate the result. Table 1 (left) presents 
this algorithm. 

 
01   experiment = e1 
02   Loop(cycle++) 
03      if (mood = BORED) 
04         pleasedDuration = 0 
05         experiment = pickOtherExperiment(experiment) 
06      anticipatedResult = anticipate(experiment) 
07      if (experiment = e1) 
08         result = r1 
09      else 
10         result = r2 
11      recordTuple(experiment, result) 
12      if (result = anticipatedResult) 
13         mood = PLEASED 
14         pleasedDuration++ 
15      else 
16         mood = PAINED 
17         pleasedDuration = 0 
18      if (pleasedDuration > 3) 
19         mood = BORED 
20      print cycle, experiment, result, mood 

00: e1r1 PAINED 
01: e1r1 PLEASED 
02: e1r1 PLEASED 
03: e1r1 PLEASED 
04: e1r1 BORED 
05: e2r2 PAINED 
06: e2r2 PLEASED 
07: e2r2 PLEASED 
08: e2r2 PLEASED 
09: e2r2 BORED 
10: e1r1 PLEASED 
11: e1r1 PLEASED 
12: e1r1 PLEASED 
13: e1r1 BORED 
14: e2r2 PLEASED 
15: e2r2 PLEASED 
16: e2r2 PLEASED 
17: e2r2 BORED 
18: e1r1 PLEASED 
19: e1r1 PLEASED 

 
Table 1: Left: algorithm of a minimalist ERC system. Right: trace of the first twenty interaction cycles. 

Table 1 (left), Lines 03 to 05: if the agent is bored then it picks another experiment arbitrarily from 
amongst the predefined list of experiments at its disposal. Line 06: the anticipate(experiment) function 
searches memory for a previously learned tuple that matches the chosen experiment, and returns its 
result as the next anticipated result. Lines 07 to 10 implement the environment: e1 always yields r1, 
and other experiments always yield r2. Line 11: the agent records the tuple 〈experiment, result〉 in 
memory. Lines 12 to 17: if the result was anticipated correctly then the agent is pleased, otherwise it is 
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pained. Lines 18 and 19: if the agent has been pleased for too long (arbitrarily 3 cycles) then it 
becomes bored. Table 1 (right) shows the activity trace generated by this algorithm.  

On Cycle 00, the agent chose experiment e1 and received result r1. It was pained because it could 
not anticipate this result. It recorded the tuple 〈e1, r1〉. On Cycle 01, it chose e1 again, anticipated r1 on 
the basis of the previous experience, got r1, and was pleased because the anticipation was correct. It 
kept e1 during the next two cycles. On Cycle 04, it got bored because it had been pleased for too long. 
On cycle 05, it changed experiment to e2 because it was bored. It was, however, unable to anticipate 
the result because it never tried e2 before. It received r2, was pained because it could not anticipate it, 
and learned the tuple 〈e2, r2〉. On Cycle 09, it got bored again. On Cycle 10, it changed back to e1, and 
anticipated result r1 based on the experience gained on Cycle 00; it indeed received r1, and was 
pleased because its anticipation was correct. 

We reported this analysis to exemplify the validation paradigm that we propose: demonstrating 
cognitive behaviors using activity traces. This behavior is very rudimentary; this agent would be 
unlikely to remain pleased if confronted with a more complex environment. In other studies [15], we 
implemented another kind of self-motivation called interactional motivation. We called the tuple 
〈experience, result〉 an interaction. Interactional motivation associates a predefined scalar valence with 
interactions, and implements an agent that tries to enact interactions that have a positive valence, and 
to avoid interactions that have a negative valence. By predefining interactions that maintain 
homeostasis (e.g. eating) and giving them a positive valence, this method allows implementing the 
motivation to regulate homeostasis without a reference to the environment’s state. We also highlighted 
the emergence of sense-making with a more complex learning algorithm for ERC agents [16]. 

Another example that follows an approach similar to the ERC is the Horde architecture [17]. Horde 
relies on a swarm of reinforcement-learning agents to control a robot that learns hierarchical temporal 
regularities of interaction through experience. 

4 Conclusion 
Inverting the interaction cycle does not merely lead to an action-perception cycle. Indeed, the 

expression action-perception cycle suggests that the agent’s input data would still represent the 
environment’s state. Instead, inverting the interaction cycle allows designing the agent’s input data so 
that it does not represent the environment’s state and does not constitute the agent’s perception. For 
this reason, we propose the new expression Experiment-Result Cycle (ERC).  

When applied to a robot, the ERC involves implementing algorithms that exploit sensor data as a 
result of an experiment performed by the robot in the real world. We argue that this approach complies 
with the embodiment paradigm because it does not require modeling the real world a priori in order to 
design input data as a representation of the world.  

We wish cognitive architectures made explicit whether they receive their input data at the 
beginning or at the end of the interaction cycle: at the beginning when it represents the environment, 
or at the end when it does not. While there may be more to embodiment than that, we believe that this 
could at least help clarify some of the differences between non-embodied and embodied cognitive 
architectures. 

Since ERC agents do not incorporate data that directly represent the environment’s state, we 
cannot program them to reach goal states, and we cannot assess them by measuring their performance 
in reaching goal states. We suggest other research objectives, namely designing ERC agents that 
exhibit smarter cognitive behaviors. This requires the scientific community to define cognitive 
behaviors more precisely and to specify criteria to assess their level of smartness.  

Drawing inspiration from methods used in ethology to assess animals’ intelligence, we suggest 
producing evidences of cognitive behaviors using activity traces. An activity trace is a stream of data 
that represents the agent’s activity. It includes pieces of the agent’s output data, input data, and 



 

 

internal data.  It allows reporting representative strips of activity for the community to judge the 
agent’s level of intelligence. 
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